Management of dropout during Exercise Tolerance Test

Annabelle Lemenuel-Diot, Céline M. Laffont, Roeline Jochemsen and Emmanuelle Foos-Gilbert

Servier Research Group, Clinical Pharmacokinetic department, F-92400 Courbevoie

Introduction

- Exercise Tolerance Tests (ETT) are used to assess the effect of heart rate (HR)
- Usually, for safety and ethical reasons, each subject can stop the exercise at his
- Therefore, missing data due to dropout can be generated, especially when high values of heart rate are reached. This may lead to a possible misinterpretation in model evaluation.

- -To illustrate that simple model evaluation can be misleading when missing at random dropout occurs
- -To propose two approaches that take into account dropout in order to correctly evaluate the model.

Material

• Study design

- 12 Healthy Volunteers
- 1 ETT Baseline per subject (i.e before drug administration)
- Steps of Workload (Watt): 0, 50, 100, 150, 180
- HR measurements every minute during ETT + 1 HR at rest (supine position)

· Missing data

- Each Subject can stop ETT at his own convenience
- 6 HV out of 12 stopped before reaching 180 Watt
- 10 HV out of 12 stopped before reaching 12 min
- Missing data seem to be linked to the level of HR reached: no value over 160 bpm.

-Increase of effort intensity every 3 min

Model without considering Dropout

PD Model (HR as a function of workload)

Different structural models have been tested (linear, Emax) using NONMEM V.The best one was a linear model.

HR=Baseline.Shift+Slope.WKLD+&

with:

 $\mathsf{Baseline} \! = \! \theta_{\scriptscriptstyle 1}.\mathsf{exp}(\eta_{\scriptscriptstyle 1}) \; : \mathsf{HR} \; \mathsf{at} \; \mathsf{rest} \; \mathsf{(in} \; \mathsf{bpm)}$

 $\mathsf{Slope} {=} \theta_2.\mathsf{exp}(\eta_2)$ Shift= θ_3

: Increase of HR during ETT : Shift supine/sitting position

WKLD

: Workload (in watt) : Additive Residual Error

	Estimate	CV (%)
Baseline	74.7	3.2
Slope	0.48	4.6
Shift	0.88	3.4
Var(η ₁)	0.0069	51.4
Var(η ₂)	0.0207	29.6
Cov(η ₁ ,η ₂)	0.0103	31.4
Var(ε)	28.2	14.1

Trends in Population GOF and VPC

Different types of missing data (Little and Rubin, 2002)

Missing Completely At Random (MCAR):

The probability of missing is independent of observed values (no repercussion on VPC or GOF)

Missing At Random (MAR):

Missing data can be predicted based on the observed values

Missing Not At Random (MNAR):

Missing data can be predicted based both on observed and unobserved values

Considering Dropout: Approach 1

Method

Assumption: MAR dropout

 Imputation of missing data using individual parameter estimates obtained from the PD model built on available observations

Goodness of fit Plot

No longer trends in Pop GOF and VPC in our

Support the assumption of MAR dropout

About this approach

- Appropriate in case of MAR dropout
- Easy to use
- No need to build a dropout model

Considering Dropout: Approach 2

Method

Assumption: MNAR dropout

- Considering dropout can have an impact on the PD
- Development of a dropout model by estimating the probability of dropout at each workload.
- With a joint estimation of the parameters of the PD model and of the dropout model.

Remark

Should present no differences in the PD model in case of MCAR and MAR data

Descriptive hazard (from our study)

Estimated hazard function for dropout (Kaplan Meier)

Dropout model

Considering the constraint that risk of dropout at the beginning of ETT is null, the dropout model was estimated as follow:

HAZARD=exp(Slope H.(HR- Int H))-1 IF (HAZARD.LE.0) HAZARD=0

Slope $H=\theta_A$

Int $H=\theta_s$

PD model

Different structural models have been tested considering dropout (linear, Emax). The best one was still the linear model.

Parameters results

	Estimate	CV (%)
Baseline	74.4	3.1
Slope	0.48	4.7
Shift	0.88	3.4
Slope_H	0.004	66.6
Int_H	150	2.7
$Var(\eta_1)$	0.0068	50.1
Var(η ₂)	0.0192	32.6
$Cov(\eta_1,\eta_2)$	0.0094	34.9
Var(e)	28.2	7.1

\$SUBROUTINE ADVANG TOL=6

NONMEM Control file (adapted from NHG Holford) \$CONTR DATA=(DVID)

CCONTR=../CCONTR.FOI CONTR=../CONTR.FOR \$MODEL COMP (HZLAST, INITIALOFF) INIV-1 IF (TEX.EQ.0) INIV=THETA(3) BASE=THETA(1)*INIV*EXP(ETA(1)) SLOPE=THETA(2)*EXP(ETA(2))

> FFFWKI.=WKI.SI.*T HRP=BASE+EFFWKL HAZ=EXP(THETA(4)*(HRP- THETA(5)))-1 IF (HAZ.LE.O) HAZ=0 DADT(1)=HAZ

Y3=EXP(-(CMHZ-HZLA))*(1-EXP(-HZLA)) Y=Y1*QPD+Y2*NDO+Y3*DO SEST METHOD=CONDITIONAL LAPLACE

Visual Predictive Check About this approach

Y1=BASE+WKLSL*WKLD+THETA(6)*EPS(1)

General approach particularly appropriate in case of MNAR

HZLA=A(2); cum haz from tlast obs till t

IF (HZLA.LE.O) HZLA=1.0D-5

IF (DVID.EQ.2) QPD=1 IF (DVID.EQ.3.AND.DV.EQ.0) NDO=1
IF (DVID.EQ.3.AND.DV.EQ.1) DO=1

V2=EYP(=CMH2)

Here, the dropout is MAR: no impact on the PD model and parameter estimates.

Discussion and conclusion

Impact of dropout:

- · Model evaluation can be misleading when dropout occurs
- Different types of missing data -> Different approaches
- If MAR: approach 1 much easier (no dropout model needed)

- No impact of dropout model estimation on the PD model : MAR dropout
- Model without treatment well evaluated. Will allow a better characterisation of PD model with treatment effect
- Acknowledgement: We want to particularly thank Pr France Mentre for all the discussion and advice she provided during this work